
Esercizi V incontro

- 1. Un proiettile di rame di massa 75 g alla temperatura di 312°C viene raffreddato in un recipiente di vetro pieno di acqua (m_a = 220 g) a temperatura ambiente T_a = 20 °C di capacità termica C_r = 45 cal/K. Determina la temperatura di equilibrio (recipiente, proiettile e acqua) trascurando le dispersioni con l'ambiente.
- 2. Una mole di gas perfetto monoatomico si trova inizialmente a pressione p_0 , volume V_0 e temperatura T_0 = 300 K. Il gas si espande fino al volume V = $2 \cdot V_0$ secondo la legge $p = p_0(\frac{V_0}{V})^2$. Determina:
 - a) la temperatura finale T del gas;
 - b) la variazione di energia interna del sistema.
- 3. Un recipiente rigido adiabatico contiene due moli di gas ideale monoatomico a pressione $2 \cdot 10^5$ Pa e T_0 = 300 K. Nel recipiente viene introdotto un solido di capacità termica C = 30 J/K e volume trascurabile ad una temperatura T_s = 800 K. Determina la pressione finale del gas.
- 4. Due moli di gas ideale, di composizione non nota, vengono riscaldate a volume costante somministrando Q = 217 J. Se il gas invece venisse riscaldato a pressione costante, servirebbero Q = 300 J per avere la stessa variazione di temperatura ΔT , del caso precedente. Determina la variazione di temperatura ΔT .
- 5. Un gas perfetto monoatomico si espande reversibilmente secondo una trasformazione rappresentata nel piano pV da un segmento di retta fino al volume $V_2 = 10 \text{ cm}^3$ e alla pressione $p_2 = 4 \cdot 10^5 \text{ Pa}$. Nello stato iniziale il gas ha le seguenti coordinate $V_1 = (2/3)V_2$ e $p_1 = 2p_2$. Determina il lavoro svolto dal gas, la variazione di energia interna e il calore scambiato.
- 6. Determina la variazione di entropia quando 2 litri di acqua a 100 °C sono portati a ebollizione e a quella temperatura vaporizzano. (ce = 540 cal/g)
- 7. Il ciclo reversibile mostrato in figura, eseguito da un gas perfetto monoatomico, è costituito da due trasformazioni isocore e due isobare. (PA = 8 atm; PD = 4 atm; VA = 2 lit; VB = 6 lit.)
 Calcolare:

- a) il lavoro svolto nella trasformazione AB;
- b) il calore scambiato nella trasformazione BC;
- c) il rendimento del ciclo;